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Introduction 

Chromosomes are actively packed into dynamic three dimensional structures 

inside the cell nucleus. Mounting evidence suggests this organization is critical 

for many aspects of genome regulation such as gene expression, DNA 

replication, chromosome transmission and genome stability.1-3 Our current 

understanding of the nuclear architecture is limited to the two extremes of 

resolution. On the chromosomal level, we depict each chromosome occupying 

a different nuclear region termed chromosomal territories (CT).1 On the scale 

of several hundred base pairs, the chromatin is generally viewed as 

nucleosomes connected by linkers or the "beads on a string" model. 4-6 This 

huge resolution gap has to be filled before any unifying model on genome 

architecture could be attempted. 

 

A number of methods have been employed in the past decades to study 

genome wide higher order chromatin structure, including DNase I, micrococcal 

nuclease and Sono-seq7. While useful to certain extent, these methods 

provide limited spatial information on chromatin arrangement.  



Chromosome conformation capture (3C) is a technique to study long range 

chromatin interactions.8 Its high throughput derivatives, such as Hi-C9 and 

tethered conformation capture (TCC) 10, are particularly informative in 

deciphering genome wide chromatin contacts on the Megabase (Mb) or even 

100 Kilobase (Kb) scales, making them promising innovations to close the 

resolution gap in our understanding of genome architecture. 

 

This review will start with a brief description of the experimental procedures of 

3C and 3C based high throughput methods and then focus on recent 

advancements in the application of high throughput 3C based methods. 

Special attention will be paid to efforts dedicated to improve the experimental 

procedures and modeling of three dimensional chromatin architecture. 

 

Experimental procedures of 3C and 3C based methods. 

The 3C experiment consists of five steps (Figure 1). The first step is to cross 

link the DNA and associated protein complexes with formaldehyde. This 

fixation gives a snapshot of the in vivo interaction between DNA and proteins. 

This is followed by digestion of the cross-linked chromatin complex with a 

restriction enzyme that cuts DNA in the region of interest. The third step is to 

ligate the restricted chromatin at low DNA concentration to facilitate 

intramolecular ligation. The chromatin complexes are then reverse 

cross-linked and the DNA is purified. If two distal chromatin regions are 

brought to proximity by chromatin looping, they are likely to be ligated. In the 



last step, purified DNA is then used as template for quantitative PCR reactions 

to determine the rate of ligation of distal regions of interest. If this rate of 

contact is higher than a control, usually contact rate of intervening regions as 

probability of contact decreases as distance increases, the two distal regions 

are likely to form a chromatin loop.8 

 

 
Fig. 1.  3C procedure. Schematic representation of a 3C assay. Light grey and dark grey boxes represent two 

interacting genomic elements, a and b, that are separated by a long intervening region ( black curved line ). The 3C 

assay starts with a cross-linking step using formaldehyde to capture protein–protein and protein–DNA interactions. A 

second step consists of enzymatic digestion with a restriction enzyme known to recognize sites in the investigated 

regions. In the third step, the cross-linked complex is religated under conditions that favor intramolecular ligation. 

Lastly, the cross-links are reversed by heat treatment; the DNA is then purified and the resulting 3C product is 

detected by qPCR. Adopted from Nativio et al. 2012.
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While useful for specific loci of interest, 3C has very limited throughput. 

Several modifications, including circularized chromosome conformation 



capture (4C) and carbon copy chromosome conformation capture (5C), have 

been made to increase its capacity (Figure 2). 4C allows study of contact 

between one region of interest to all other regions of the genome. It uses a 

second restriction enzyme after first ligation and then circularize the ligated 

product. This circularized DNA is used as template for PCR reactions to 

determine genomic regions that are ligated to the region of interest.12 5C is 

very similar to 3C but a set of multiplex primers connected to two universal 

primers are used for the PCR reaction. The PCR products are then sequenced 

to determined ligated sequences. Depending on the number of multiplex 

primers, this method establish interaction between many loci to many loci 

simultaneously.13 

 

 



Figure 2.  Overview of 3C-derived methods. An overview of the 3C-derived methods that are discussed is given. The 

horizontal panel shows the cross-linking, digestion, and ligation steps common to all of the "C" methods. The vertical 

panels indicate the steps that are specific to separate methods. Adopted from de Wit E et al. 2012.
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It is not until the development of Hi-C that study of chromatin interactions at the 

genome wide level becomes possible.9,15 In general, this method involves 

digestion of the chromatin with a restriction enzyme and subsequently filling up 

5' overhangs with nucleotides in which one type of nucleotide is biotinylated. 

Ligation is carried out after chromatin dilution to favor intramolecular ligation 

events. Ligated fragments with biotin at their ligation junctions are isolated by 

streptavidin and identified by high-throughput sequencing. Meaningful 

interpretation of this huge amount of data depends on effective and robust 

statistical analysis. The output paired end sequencing data is first mapped to 

the genome with established statistical programs.16 A quality control of reads is 

usually carried out at this step to discard sequences that are unlikely to rise 

from ligation of restricted fragments if they are too far away from the nearest 

restriction sites.17 The core analytic step is to create a matrix comparing the 

observed number of reads between two loci of certain length, or more 

commonly referred to as bins, to the expected number of reads between these 

two bins (Figure 3). The observed interaction matrix is a collection of the 

numbers of interactions between each pair of bins from the mapped data. The 

expected number of interactions between two intrachromosomal bins is 

derived from the experimental data by taking the total number of observed 

interactions at a distance s divided by the total number of possible interactions 



at distance s across all chromosomes. To obtain the interchromosomal 

averages, the number of observed interactions between bins on a pair of 

chromosomes was divided by the number of possible interactions between the 

two chromosomes. The observed interaction matrix can then be normalized by 

the expected interaction matrix to generate an Observed/Expected matrix. 

Because two bins that are close together in space should interact with similar 

bins and thus should have correlated interaction profiles, a correlation matrix 

can be derived by calculating the Spearman correlation coefficient (Pearson 

correlation assumes linearity) between each pair of bins (or each pair of 

vectors in the Observed/Expected matrix). This correlation matrix reveals the 

average positioning of bins with respects with each others.15 

 

The high throughput methods can be easily coupled with chromatin 

immunoprecipitation (ChIP) to build a chromatin interactome map of loci bound 

by a specific protein of interest. The major modification is that ChIP is carried 

out after crosslinking and sonification to enrich for fragments bound by a 

particular protein of interest. 18,19 One such method, known as ChIP-PET, 

effectively reveal genome wide chromatin interactions associated with a 

protein of interest,18,19 allowing interpretations of the functional involvement of 

the protein of interest in modifying chromatin structure. 

 



 

Figure 3. Heat maps depicting intrachromosomal contact heat maps for chromosome 14 at resolution of 1Mb. A) 

Observed interactions. B) Expected interaction frequencies based on genomic distance. C) Quotient of matrices A and 

B, showing more (red) or less (blue) interactions than expected. D) Correlation matrix between intrachromosomal 

interaction profiles. Adopted from Lieberman-Aiden, E. et al. 2009. 

 

Recent developments on 3C based high throughput methods 

 

3C based high throughput methods gained popularity shortly after the first Hi-C 

paper. Genome-wide contact maps have been obtained for Lymphoblastoid 

cells10,15, mouse20,21, fission yeast22, budding yeast9,23 and fruit fly24. These 

studies have demonstrated the potential of Hi-C methods in probing and 

explaining various biological processes. For instance, spatial proximity 

contributes to translocations via formation of double strand breaks20; clusters 

of interacting loci isolated from each other by insulators are identified in mouse 

genome21; actively transcribed genes, genes with similar promoter elements 

(under the regulation of similar groups of proteins) and functionally related 



genes tend to associate with each other22,24. However, given the complicated 

nature of the experiments, 3C based methods are prone to bias and 

misinterpretations. A number of studies focus on the improvement of 

experimental designs and quality control of experimental data. Also, there is an 

emerging effort to construct three dimensional models from high throughput 

3C based methods. 

 

Modifications in experimental procedures 

 

A major source of error in 3C based methods comes from random 

intermolecular collision of restricted DNA fragments that are not cross-linked to 

each other. Because randomly selected DNA fragments are more likely to 

originate from different chromosomes, these ligations tend to be 

overwhelmingly interchromosomal.10 Such random noise would mask a 

substantial number of interchromosomal interactions, most of which occur at 

low frequencies. In addition, sample cells used for the experiments represent a 

heterogeneous pool of chromatin architecture and many interesting and  

informative chromatin loopings are only present in a fraction of the cells.25,26 

These low frequency interactions are also likely to be lost due to the high noise 

to signal ratio.  

 

One way to tackle this problem is to carry out multiple control experiments on 

uncrosslinked purified genomic DNA to establish a random intermolecular 

interaction background and compare data from actual experiments with the 



background to rid of the noise. However, this method is both tedious and 

expensive and is not shown to be more effective than normalization with an 

expected interaction matrix.9 

 

Kalhor R et al. took an alternative approach by carrying key steps of the 

experiments on solid phase instead of solutions. Proteins are biotinylated prior 

to DNA digestion and protein bound fragments are immobilized at a low 

surface density on streptavidin-coated beads. Ligation is carried out while the 

DNA fragments are immobilized on the beads, hence the rate of background 

ligation due to random collisions between molecules is largely reduced. 

 

This innovation, termed tether conformation capture (TCC), greatly reduces 

the noise to signal ratio and unravels informative details on interchromosomal 

interactions missed by traditional Hi-C methods (Figure 4). The investigators 

first demonstrated that the TCC method could reproduce the 

intrachromosomal interaction pattern generated by Hi-C method (Figure 4a 4b). 

They tested the effectiveness of their modification with two restriction enzymes. 

Using the traditional 6 cutter (recognize 6 base pairs) HindIII, the TCC method 

generated only half the interchromosomal interactions generated by Hi-C 

(Figure 4c). Using a 4 cutter restriction enzyme MboI, the TCC method 

generated less than half the interchromosomal interaction generated by Hi-C. 

Interestingly, the TCC method generated a comparable level of 



interchromosomal interactions with 4 cutter restriction enzyme to that 

generated by 6 cutter. 4 cutter restriction enzymes generate more but smaller 

DNA fragments which have higher random collision probability than that 

generated by 6 cutters. This method demonstrated the possibility of using 4 

cutter restriction enzymes without greatly compromising signal to noise ratio. 

As 4 cutter enzymes cut much more frequently, this technique would allow 

study of chromatin architecture at a much higher resolution. 

 

Reducing random interchromosomal interaction decreases the expected 

interchromosomal interactions and thus increases the Observed/Expected 

value. As expected, the TCC method captured a lot of interchromosomal 

interactions otherwise missed by Hi-C method (Figure 4d 4e). 

 



 
Figure 4. Tethering improves the signal-to-noise ratio of conformation capture. (a,b) TCC can reproduce the results 

obtained by Hi-C10. A genome-wide contact frequency map is compiled from the ligation frequency data generated by 

tethered (TCC) (a) and nontethered (Hi-C) (b) conformation capture. The portion of each map that corresponds to the 

intrachromosomal contacts of chromosome 2 is shown. The intensity of the red color in each position of the map 

represents the observed frequency of contact between corresponding segments of the chromosome (c) The observed 

fractions of intra- and interchromosomal ligations in tethered (T) and nontethered (NT) libraries produced using HindIII 

or MboI. The random ligation (RL) bar represents the expected fractions if all ligations occurred between 

noncrosslinked DNA fragments. For the nontethered MboI library only, these fractions were determined by sequencing 

160 individual DNA molecules from three replicates of the experiment. (d,e) The genome-wide enrichment map for 

chromosome 2, compiled from the tethered (d) and nontethered (e) HindIII libraries. Enrichment is calculated as the 

ratio of the observed frequency in each position to its expected value; expected values were obtained assuming 

completely random ligations (Online Methods). Red and light blue, respectively, indicate enrichment and depletion of a 

contact. Chromosome 2 (left) extends along the y axis whereas all 23 chromosomes (top) extend along the x axis. 

Adopted from Kalhor R et al. 2011 

 

Generation of robust interaction frequency matrices 

 

The correlation matrix is derived from the quotient matrix of Observed 

interaction matrix/Expected interaction matrix and is used as a measure of 



spatial relationship between loci. Generation of robust observed interaction 

frequency matrix and/or expected interaction frequency matrix is therefore 

critical for drawing any reliable conclusion on the chromatin structure. 

Pioneering Hi-C studies make use of the idealized expected number of 

contacts between each pair of bins to construct the Expected matrix without 

considering potential bias and artifacts introduced by the experimental 

procedures.  

 

Five major sources of bias were identified in two studies: the length of 

restriction fragments, the length of fragment ends, GC content of the 

paired-end reads, the length of DNA segments at the circularization  

steps and “mappability” of sequence reads. 27,28 

 

In theory, as the number of positions accessible to fixating along a restriction 

fragment increases with its size, the interaction probability increases linearly 

with restriction fragment size. Indeed, this is true for restriction fragments 

under 800 bp. However, for longer restriction fragments, a plateau is reached, 

suggesting that the maximum probability for at least one cross-linking event to 

occur along that length is reached (Figure 5). 



 
Fig 5. Quantification of the fragment length bias. Adopted from Cournac, A. et al. 2012. 

 

The sizes of crosslinked fragment ends affect their ligation efficiency. Ligation 

efficiency is low when fragment ends are too long or too short. Optimal ligation 

takes place when both crosslinked fragment ends have intermediate length 

(Figure 6). 

 

 



Fig 6. Schematic drawing and quantification of ligation efficiency due different fragment length. The trans Hi-C 

coverage enrichment is defined as the ratio between the observed number of trans contacts and the total number of 

assayed fragment pairs. Adopted from Yaffe, E. et al. 2011. 

 

Another potential bias comes from the GC content of the restriction fragments. 

Fragments with extreme GC content are underrepresented in the final 

interaction reads. Deep sequencing appears to favor reads with a GC content 

of about 45% (Figure 7). 

 

 

Fig 7. Quantification of the fragment length bias. Adopted from Cournac, A. et al. 2012. 

 

The forth bias is dependent on the length of DNA segments at the 

circularization steps (Most human Hi-C protocol does not require a 

circularization step). Mechanical property of the DNA polymer dictates too 

small a fragment will be poorly ligated due to high bending persistence while 

too long a fragment will also disfavor ligation due to entropic contribution to the 

free energy. Optimal circularization is achieved at around 500 bp (Figure 8). In 

addition, this bias is highly non-monotonous in cycles of 10.5 bp. For instance, 

it favors the circularization length of 261 bp, but circularization length of 



disfavor 266 bp and again favor circularization length of 271 bp. 

 

 

Fig 8. Quantification of the circularization length bias. Adopted from Cournac, A. et al. 2012.  

 

The last bias is associated with highly repetitive regions. Regions with low 

level of unique sequences are usually unmappable and hence 

underrepresented in the final interaction reads (Figure 9). 

 

Fig 9. Quantification of the mappability bias. Adopted from Yaffe, E. et al. 2011. 

 

As bins used for later computation each contains one or more fragment ends, 

the bias is carried on to later computations. To eliminate these systematic 

biases, Yaffe, E et al. 2011 developed a probabilistic model to generate a more 

accurate expected interaction matrix in silico.28 This method was designed for 



human Hi-C data analysis and correct for fragment ends length, GC content 

and mappability.  

 

Fragment ends from chimeric Hi-C reads were binned according to the length 

of their corresponding fragments into 20 equally sized bins denoted by 

(  
       

  . The seed matrix for fragment lengths is defined as :           

           
         

         
, where        is the prior probability to observe a pair and is 

equal to the total number of observed interchromosomal pairs divided by the 

total number of possible interchromosomal pairs,           is the number of 

observed interchromosomal pairs such that one fragment end is in bin   
    

and the other is in bin   
   , and           is the total number of possible unique 

interchromosomal pairs such that one fragment end is in bin   
    and the 

other is in bin   
   . The function is more amenable to understanding in the 

form of           
         

                
, which simply represents the ratio between the 

number of observed interchromosomal pairs such that one fragment end is in 

bin   
    and the other is in bin   

    and the number of such possible unique 

interchromosomal pairs that are expected to be observed on average.  

 

The GC content seed matrix     is computed in a similar manner where 20 

bins are defined according to the GC content of the 200 bp near the fragment 

end. Same procedure is applied to mappability matrix but with only five bins 

(not a seed matrix because mappability scores can be determined from the 



empirical data).  

 

The expected interaction probability for two given fragment ends a and b is 

defined as:                                                        

where     ,     ,     and     are the fragment length bins and GC content 

bins of the two ends,      and      are mappability scores of the two ends, 

and                 and              are two real valued functions. 

Mappability scores are readily calculated from the empirical data while 

                and              are determined statistically through a 

maximum likelihood method. The likelihood function is: 

 

                                 

              

 

         
  

                                

            
   

where I is the set of observed fragment end pairs,    is the number of 

observed pairs that match the bin criteria of c and    is the number of 

observed pairs match the criteria but are not observed. Solving the equation 

gives the values of                                  that maximize the 

probability of observe interaction matrix to occur. However, this equation can 

only be solved through heuristic method. Here the two seed matrices are used 

as initial input,     
             

      . The likelihood function is maximized 

by alternating between the optimization of the two matrices: 



    
            

    

          
      

       
  

   
            

   

      
           

        
  

This two steps are repeated until the improvement in the log-likelihood is 

smaller than an arbitrary threshold. Applying the resultant              

matrices would generate an improved expected interaction matrix. 

 

As current sequencing depth may yield less than 1 Hi-C read per bin, the 

investigator also smoothed the observed and expected contact matrices using 

linear weights:  

      
  

                  

             

 

where W=10 and      
 

         
  

The same procedure is applied to expected interaction matrix and the quotient 

matrix is still calculated by Observed/Expected but further normalized by total 

coverage for different bin pairs. 

 

This method is computationally expensive and only accounts for known 

sources of bias. An iterative correction method is later proposed to correct the 

observed interaction probability matrix instead of the expected interaction 

matrix. The method is less computationally demanding and does not rely on 

prior knowledge of the sources of bias. 29 It is built on the assumption that the 

bias for detecting interaction between two fragment ends is factorizable. The 

assumption is justified by showing that the method can explain 99.99% of the 



variance captured by Yaffe and Tanay's method.29 The observed contact 

probability between two bins,    , is a realization of the expected observed 

contact probability,    , with a certain distribution,            (eg. Poisson 

distribution). The expected observed contact probability is defined as  

             , where    and    are the biases at fragment end i and j and 

    is the true matrix of interaction probability. Given the distribution f(.), the 

likelihood of the observed interaction probability matrix is given by: 

              

  

    

also,          again taking the maximum likelihood approach, the equation 

can be solved to find the vector     which maximizes the likelihood of the 

observed interaction probability matrix and hence solve for    , the true 

interaction probability matrix. Assuming a Poisson distribution and setting first  

and second derivatives to 0, the maximum likelihood equation can be 

simplified to  
   

    
   , which is solved by iterations. 

 

While these two methods are generally accepted and applied in more recent 

studies20,21,24, I would like to raise the caveat that high correlation between two 

vectors in the interaction probability matrix should not be simply interpreted as 

spatial proximity of two loci, but rather a sum of spatial proximity and 

behavioral similarity. It is likely that a large number of chromatin loops are 

highly flexible and interact with multiple loci with certain probability. When a 

snap shot of the sum of such probabilistic event is taken ,each locus should be 



seen as moving within a dynamic range with certain probability. The level of 

correlation of the interaction profiles of two loci (two vectors on the interaction 

matrix) depends on both spatial proximity and similarity of their dynamic 

movements. This way of interpreting the interaction frequency matrix has 

profound implications on building three dimensional models from the 

experimental data.  

 

Interpretation of the 3C based high throughput data: towards the 

building of a 3D chromatin distance model on the genome scale 

 

Despite our increasing capability to generate huge data set and to conduct 

robust data normalization, constructing a three dimensional distance model on 

the genome scale remains a challenging task due to the lack of suitable 

statistical methods. 

 

The traditional method was to convert the question at hand to a constrained 

optimization problem.30 Duan et al. 2010 made the first attempt to build a 

genome wide three dimensional model in yeast with this method.9 

Chromosomes are represented as series of beads in 3D space, spaced 10 kb 

apart. Each restriction fragment is mapped to its closest beads and an 

algorithm is carried out to place each beads at a distance that is inversely 

proportional to their interaction frequency (130 bp is assigned a length of 1 nm). 

A number of restrictions are introduced on the location of these beads to 



ensure a biologically possible spatial distribution: all beads must lie within a 

spherical nucleus with radius 1 μm; the distance between every two beads 

adjacent on the chromosome must be within a given range, 66nm to 99nm 

(estimated length for 10kb); no two beads should be placed closer than 30 nm 

(the thickness of chromatin); beads of different chromosomes must be 

separated by a minimum distance of 75nm to prevent interchromosomal 

crossings between segments connecting adjacent beads; rDNA is constrained 

to a spherical nucleolus with radius 0.3 μm; centromeres are placed on the 

diametrically opposite side of the nucleolus. This algorithm turns the problem 

into a nonlinear constrained optimization problem which is solved using an 

open-source software IPOPT. 

 

This approach has two drawbacks. Firstly, the objective function (root mean 

square deviation) assumes that each IF measurement is equally reliable. 

Secondly, the structure obtained has no measure of uncertainty. A heuristic 

approach was then proposed to generate sets of candidate structures.31,32  

 

Arguing these approaches are not based on probabilistic models and hence 

may not produce structures representative of the true set of possible structures, 

Rousseau et al. 2011 developed a probabilistic model using a Markov chain 

Monte Carlo-based method named MCMC5C.33Their algorithm samples from 

the posterior distribution of spatial positions of fragment ends given the 



observed interaction frequency. An ensemble of conformations is produced 

with probability equal to its posterior probability. The method starts with the 

generation of list of possible structures. A random structure   is initially 

chosen to seed the selection process (t=0). A random perturbation is applied to 

   to generate   
 . If   

  has bigger posterior probability than   , it is retained 

and set to     . Otherwise,   
  is retained with probability equal to the 

posterior probability of   
  divided by the posterior probability of   . Posterior 

probability is calculated assuming Hi-C read counts follow a binomial 

probability distribution (a Gaussian distribution is used to approximate the 

binomial distribution for easier computation). The process is repeated to 

generate a list of structures        . At some point m, for all k m,    

becomes independent of   . In fact ,for any sufficiently large σ,      is 

independent of   .   ,     ,      ...          are collected and named    

to   . This is the set of structure that is representative of the distribution of 

structures that fit the observed interaction frequency data. The structures are 

cluster hierarchically according to their level of similarity measured by root 

mean squared deviation. This clustering is used to determine the existence 

and number of structure subfamilies and the members of each subfamily.   

 

The major problem with the method is that the Gaussian variance of each read 

count of a pair of loci cannot be accurately estimated since a single Hi-C 

interaction matrix does not contain enough information. Most recently, another 



method base on Bayesian inference is published.34 The investigators believe 

that each topological domain on the chromatin share a consensus 3D 

chromosomal structure to keep its conservative functional forms. Based on this 

assumption, they developed a algorithm called Bayesian 3D Constructor for 

Hi-C data (BACH) to build consensus 3D structures for individual topological 

domains. They also believe adjacent topological domains exhibit flexibility and 

interact with each other in ways similar to that between loci and develop 

BACH-MIX to model it. For the BACH algorithm, they assume that the 

off-diagonal count    (i j) in the interaction matrix follows a Poisson 

distribution with a rate    , where: 

log(   )=  +                                                     . 

   measures the magnitude of negative association between     and     

(distance between the two loci) and     ,      and      are coefficients for 

the fragment end length effect, GC content effect and mappability effect. Let 

P=          
  represent the Cartesian coordinates of the n loci of interest and 

let β=(                      be the collection of all nuisance parameters. The 

joint likelihood for n loci of interest is of the form: 

               
       

       
      

  

   

    
       

 

The algorithm adopts a fully Bayesian approach with non-informative priors to 

establish the posterior probability. As a result, a large number of parameters 

needs to be estimated. It starts by obtaining initial values for nuisance 

parameters using Poisson regression approach. In the next step initial 3D 



chromosomal structure is obtained by sequential importance sampling. This is 

followed by a Gibbs sampler to refine the 3D chromosomal structure and 

nuisance parameters. The BACH-MIX algorithm adopt a similar procedure for 

adjacent topological domains, treating each domain as a loci to establish their 

relative positions. Due to the large number of parameters estimated and 

multiple heuristic sampling processes involved, the reliability of this method 

requires further clarification. Also, the assumption of a consensus local 3D 

structure may not hold as there are known cases of local flexibility in chromatin 

interaction.  

 

The three methods described here certainly move us towards the final goal of 

building meaningful 3D chromatin distance model on the genome scale. For 

their respective drawbacks, however, I would hesitate to recognize any of 

these as potentially standard algorithms for such a purpose. The difficulty of 

building 3D chromatin distance model from high throughput data is at least 

three fold. On the biological level, the chromatin structure of even the same 

cell type at the same cycle is likely to be highly flexible locally and any model 

that fails to appreciate such dynamic will not be able to generate a biologically 

meaningful model. On the experimental level, a heterogeneous pool of cells is 

usually used, further complicating interpretation of the result to generate one 

unique 3D structure. On the algorithm level, the data is usually insufficient to 

estimate the huge number of parameters in a model with high confidence. 



These problems may be partially solved by devising more dynamic 3D model, 

using single cell technique to achieve homogeneity in starting material and 

conducting multiple sets of experiments for parameter estimation. More 

importantly, integrating polymer physics into our 3D chromatin structure model 

could be critical.35-37 Notably, a recent "strings and binders switch" model, 

which combines the features of a random walk polyer model and the effects of 

interactions mediated by diffusible factors, reproduces many of the biological 

properties of chromatin structures.37 An encouraging analogy would be the 

contribution of polymer physics in study of protein structure.38 

 

Conclusion 

This short review summarizes the experimental procedures of 3C and its high 

throughput derivatives and describes the recent advancements in 

experimental procedures, normalization of interaction frequency matrix and 

construction of 3D chromatin structures. Improvements and drawbacks on 

these methods and algorithms are discussed with some analysis of the 

difficulties in data analysis and 3D chromatin structure construction. 

 

Studies have revealed interesting relationships between transcription factors, 

non-coding RNAs, cytoskeleton and the chromatin architecture.18,19,39-41 

Integrating all these information in the hope of building a unifying model of 

genome regulation requires the construction of three dimensional chromatin 

structure. Despite a number of difficulties, 3C based high throughput methods 



are arguably the most promising techniques for this purpose and they are 

constantly evolving.  

 

Overcoming the hurdles in constructing a genome wide three dimensional 

chromatin architecture requires further understanding of fundamental 

properties of chromatin folding. For instance, more 3C studies should be 

conducted with deep sequencing to further our understanding of local 

chromatin dynamics. In addition, more studies of the polymer behavior of 

chromatin need to be carried out to provide insight into its physical properties. 

An interventionist approach can also be taken to manipulate linear and 3D 

chromatin to elucidate their properties: editing genomic features, adding 

artificial DNA-binding proteins or inserting reporter constructs and study how 

chromatin interactions are changed by perturbing certain factors.42,43 These 

studies would be essential to improve the analysis of 3C based high 

throughput data and devising better models and algorithms in the construction 

of 3D chromatin models. 
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